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Task

¢ |earn the meaning of a word from natural conversation
desprte not having negative examples

¢ Learn an association from language to perceived environment

¢ Visual percepts €= attribute words

¢ Joint model of visual percepts and natural language to identify novel
object, shape, and color described by tokens (words)L!J

¢ Obtain important positive terms to learn

¢ Find appropriate negative examples

¢ statistical language comparison metrics

_ (positive example)

[l Matuszek, FitzGerald, Zettlemoyer, Bo, Fox. ICML 2012.

Not blue
(negative example)



Motivation

¢ Unavailability of negative examples in natural conversation

“this is a lemon”
“this object is an yellow ball”

¢ Difficulty in gathering negative information without prompting

¢ Lack of positive label may not be a negative!

. “this is a lemon” é@ “not yellow”



Goals

¢ Choose words to learn

¢ Relevant, semantically meaningful, important

¢ Find an efficient way of obtaining negative examples

¢ Measure effectiveness of choices for language acquisition

Choose to train “‘banana’’ classifier

- e Positive example
m e \|egative example




Grounding Training

¢ Training visual classifiers based on percepts

¢ When new language tokens are encountered:
¢ |Important tokens selected
¢ Visual classifiers created and trained on perceptual context

¢ As more objects are seen, ‘best’ classifier emerge
¢ E.g, most predictive of data observed so far

Language '
A shase Perceived Newly created semantics
nnotation world state Word “cube”
ord “cube
This is a short Learning PAREN
green cube. NEW—CLASSIFIER—
CALLED-‘cube’




Data Corpus Collection
_6

¢ /2 classes, | 8 categories
¢ Food objects
¢ Children’s blocks

¢ Descriptive Language:

¢ 3055 descriptions from
Mechanical Turk
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cucumber

¢ 19,94/ unique words
¢ 200-450 words/document

cylinder

¢ 230 unique tokens
selected for learning

triangle



¢

Approach Overview

Dataset: real world

objects (toys, food)

Documents

Selected terms

Objects deIs_Icl;ir;t?Ens
Language: |
crowdsourced human | Negative examples e Document similarity
descriptions measure
Documents: set of a — Model —
descriptions of each
object

Positive labels: visually meaningful words worth learning

Negative examples: objects chosen as negatives for them




Approach Overview 2
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Choosing Words to Learn

¢ Positive labels: choosing visually meaningful words to train
classifiers for

o tf-idf: term frequency-inverse document frequency
¢ How important a word is to a document

¢ Increases proportionally to the number of times a term appears in
the document

¢ Decreases with the number of documents containing that term

N

tf-idf (t,d, D) = tf(t,d) - log|{al € D:ted}

tf(t,d) - the number of times a term t appears in document, d.
{d € D :t € d}| - the number of documents in which the term t appears.
N - the size of the set of documents. |D|



Document Features

Negative examples: semantically distant objects using Paragraph
Vectorl?l and cosine distance

* Log probability vector @ @ @ @ oot

Y= b + UR(W, .., WD)

U, b — Softmax parameters

h — average of W’s and D @ @ ....... @ Hidden layer

k — context window parameter

Word and Paragraph
Input Vectors

Learning using softmax classifier Wi yllow” W <> el V<> ned Dy
(we] ) = Zeywt
D\Wi | Wt—Fky ey Wtk )
¥ eyz

T—k
o N 1
Maximize average log probabllity: 7 Z log p(wg|wi—k, ..., Wit k)
t=k

* Cosine similarity:
A.B - cosine of angle between documents in vector space

cos(0) =
1A2]B]2 [2] Quoc Le and Tomas Mikolov. ICML 2014.




Term Selection
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Choosing Negatives

§ § Cosme Slmllarlty of banana lIIustrated
: srm(banana <ob;ect1 >) = cos § g
ellow banana
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¢ Vectors = individual objects

¢ Angle = similarity of descriptions



Example Results

“rectang-
ular”




Color and Shape

Ground truth
yellow  red green | white | orange

. :E “yefllc?w” 0.9 0.20 0.37 0.05 0.02 'S Per‘formance Of
é: § btl‘lldl’r’lg 0.09 0.11 0.00 0.00 0.17 trained model
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Results: Object identification

¢ Object classification:
¢ Possibility of learning more complex concepts
¢ Good performance on interacting problem

Ground Truth

semi-
cylinder

banana eggplant| tomato

(13 29

corn 0.01 0.04 0.00
“building” | 0.08 0.02 0.03
“banana” 0.00 0.00 0.04

“tomato” 0.00
“Wedge,’
“eggplant” | 0.26 0.24 0.01

0.00

Object classifier
denoted by “term”’

0.84 0.11




Future Work

¢ A thorough evaluation in positive and negative term
selection

¢ Use Amazon Mechanical Turk
¢ Comparison of model with a traditional base model

¢ bvaluate the model in a more ‘real world’ problem
¢ A more varied set of objects.
¢ Additional kinds of classifiers.
¢ Complex visual classification tasks.



Conclusion

¢ Semantic representations of their perceived
environments

¢ Discovered ground truth labels

¢ Document similarity metrics in negative exmple
selection

¢ Efficient in unprompted human interaction scenario
¢ Effective for grounded language acquisition tasks

Thank you!
Questions?



