

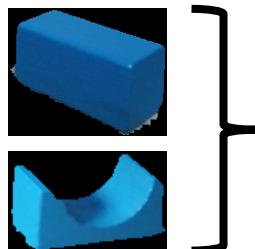
Identifying Negative Exemplars in Grounded Language Data Sets

Nisha Pillai, Cynthia Matuszek
{ npillai1 | cmat } @ umbc.edu

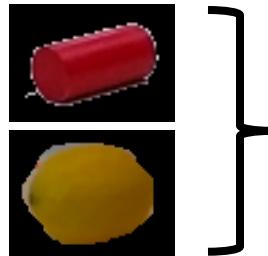
Task

2

- ◆ Learn the meaning of a word from natural conversation despite not having negative examples
 - ◆ Learn an association from language to perceived environment
 - ◆ Visual percepts \leftrightarrow attribute words
 - ◆ Joint model of visual percepts and natural language to identify novel object, shape, and color described by tokens (words)^[1]
- ◆ Obtain important positive terms to learn
- ◆ Find appropriate negative examples
 - ◆ statistical language comparison metrics



Blue
(positive example)



Not blue
(negative example)

Motivation

3

- ◆ Unavailability of negative examples in natural conversation

“this is a lemon”

“this object is an yellow ball”

~~“this is not a carrot”~~

- ◆ Difficulty in gathering negative information without prompting
- ◆ Lack of positive label may not be a negative!

“this is a lemon” $\not\Rightarrow$ “not yellow”

Goals

4

- ◆ Choose words to learn
 - ◆ Relevant, semantically meaningful, important
- ◆ Find an efficient way of obtaining negative examples
- ◆ Measure effectiveness of choices for language acquisition

Choose to train “banana” classifier

Positive example

Negative example

Grounding Training

5

- ◆ Training visual classifiers based on percepts
- ◆ When new language tokens are encountered:
 - ◆ Important tokens selected
 - ◆ Visual classifiers created and trained on perceptual context
- ◆ As more objects are seen, 'best' classifier emerge
 - ◆ E.g., most predictive of data observed so far

Language
Annotation

"This is a short
green cube."

Perceived
world state

Learning

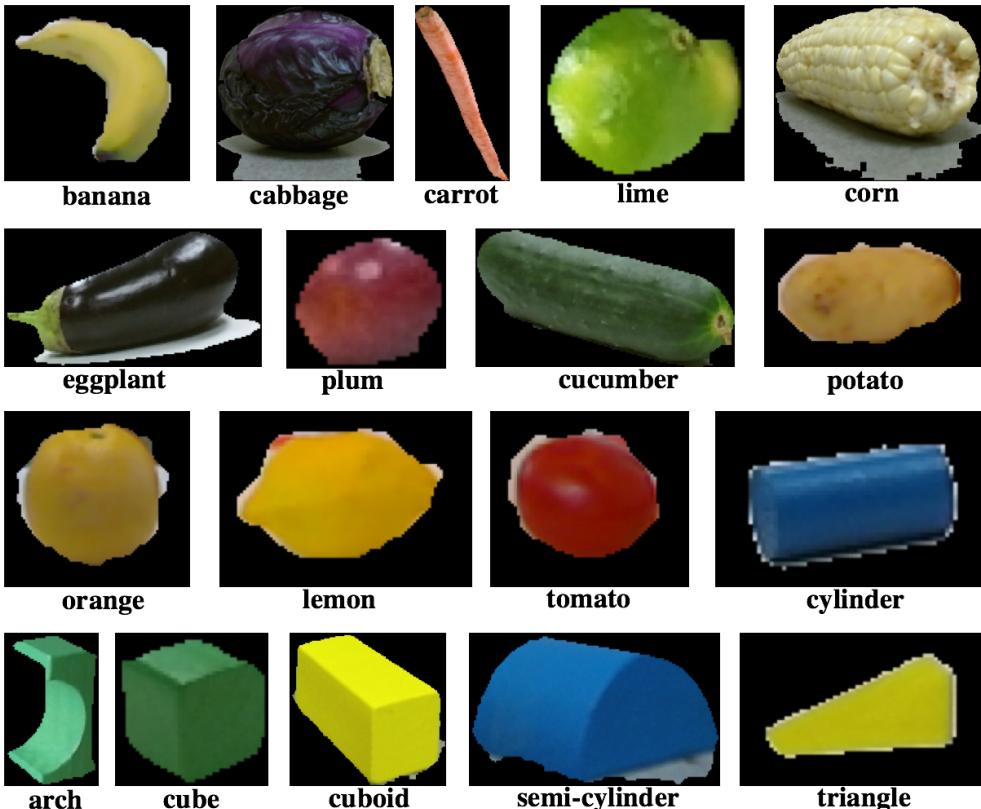
Newly created semantics

Word "cube"
↔
NEW-CLASSIFIER-
CALLED- 'cube'

Data Corpus Collection

6

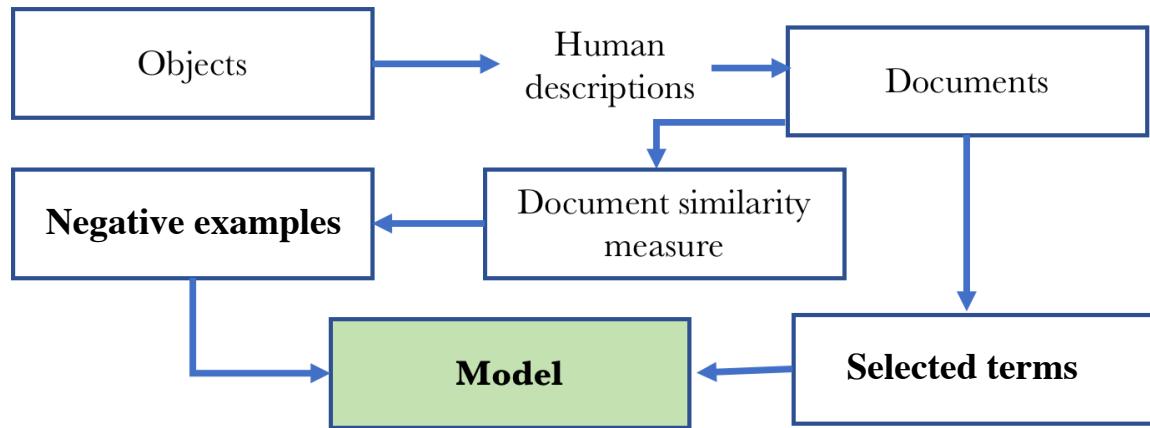
- ◆ 72 classes, 18 categories
 - ◆ Food objects
 - ◆ Children's blocks
- ◆ Descriptive Language:
 - ◆ 3055 descriptions from Mechanical Turk
 - ◆ 19,947 unique words
 - ◆ 200-450 words/document
- ◆ 230 unique tokens selected for learning



Approach Overview

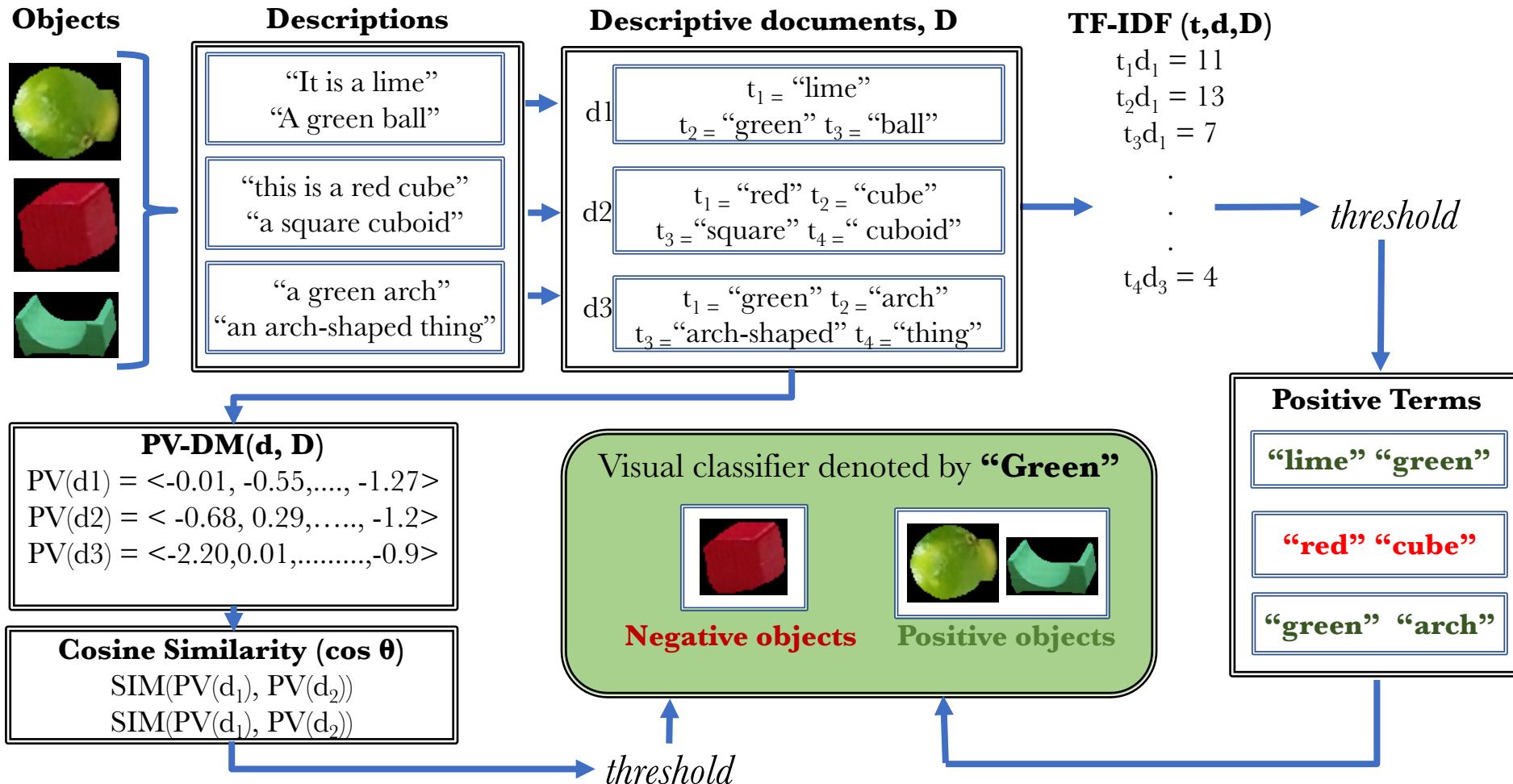
7

- ◆ **Dataset:** real world objects (toys, food)
- ◆ **Language:** crowdsourced human descriptions
- ◆ **Documents:** set of a descriptions of each object
- ◆ **Positive labels:** visually meaningful words worth learning
- ◆ **Negative examples:** objects chosen as negatives for them



Approach Overview 2

8



Choosing Words to Learn

9

- ◆ Positive labels: choosing visually meaningful words to train classifiers for
- ◆ tf-idf: term *frequency-inverse document frequency*
 - ◆ How important a word is to a document
 - ◆ **Increases** proportionally to the number of times a term appears in the document
 - ◆ **Decreases** with the number of documents containing that term

$$tf\text{-}idf(t, d, D) = tf(t, d) \cdot \log \frac{N}{|\{d \in D : t \in d\}|}$$

$tf(t, d)$ - the number of times a term t appears in document, d .

$|\{d \in D : t \in d\}|$ - the number of documents in which the term t appears.

N - the size of the set of documents. $|D|$

Document Features

10

Negative examples: semantically distant objects using Paragraph Vector^[2] and cosine distance

- Log probability vector

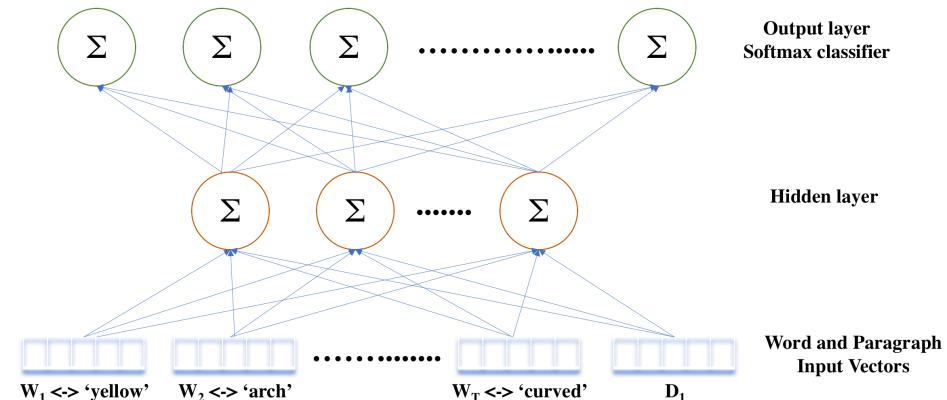
$$y = b + Uh(w_{t-k}, \dots, w_{t+k}; W, D)$$

U, b – Softmax parameters
h – average of W's and D
k – context window parameter

Learning using softmax classifier

$$p(w_t | w_{t-k}, \dots, w_{t+k}) = \frac{e^{y_{w_t}}}{\sum_i e^{y_i}}$$

Maximize average log probability:



$$\frac{1}{T} \sum_{t=k}^{T-k} \log p(w_t | w_{t-k}, \dots, w_{t+k})$$

- Cosine similarity:

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2}$$

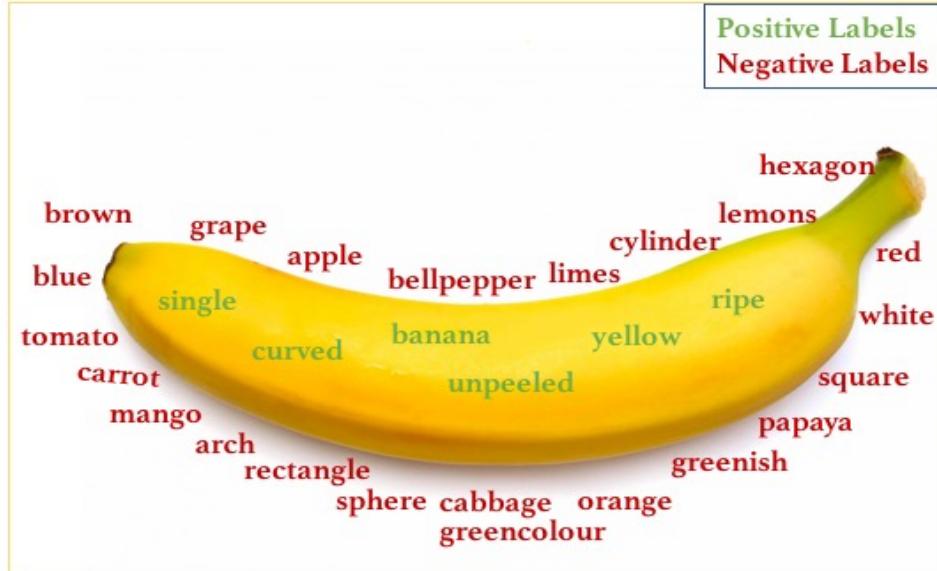
- cosine of angle between documents in vector space

Term Selection

11

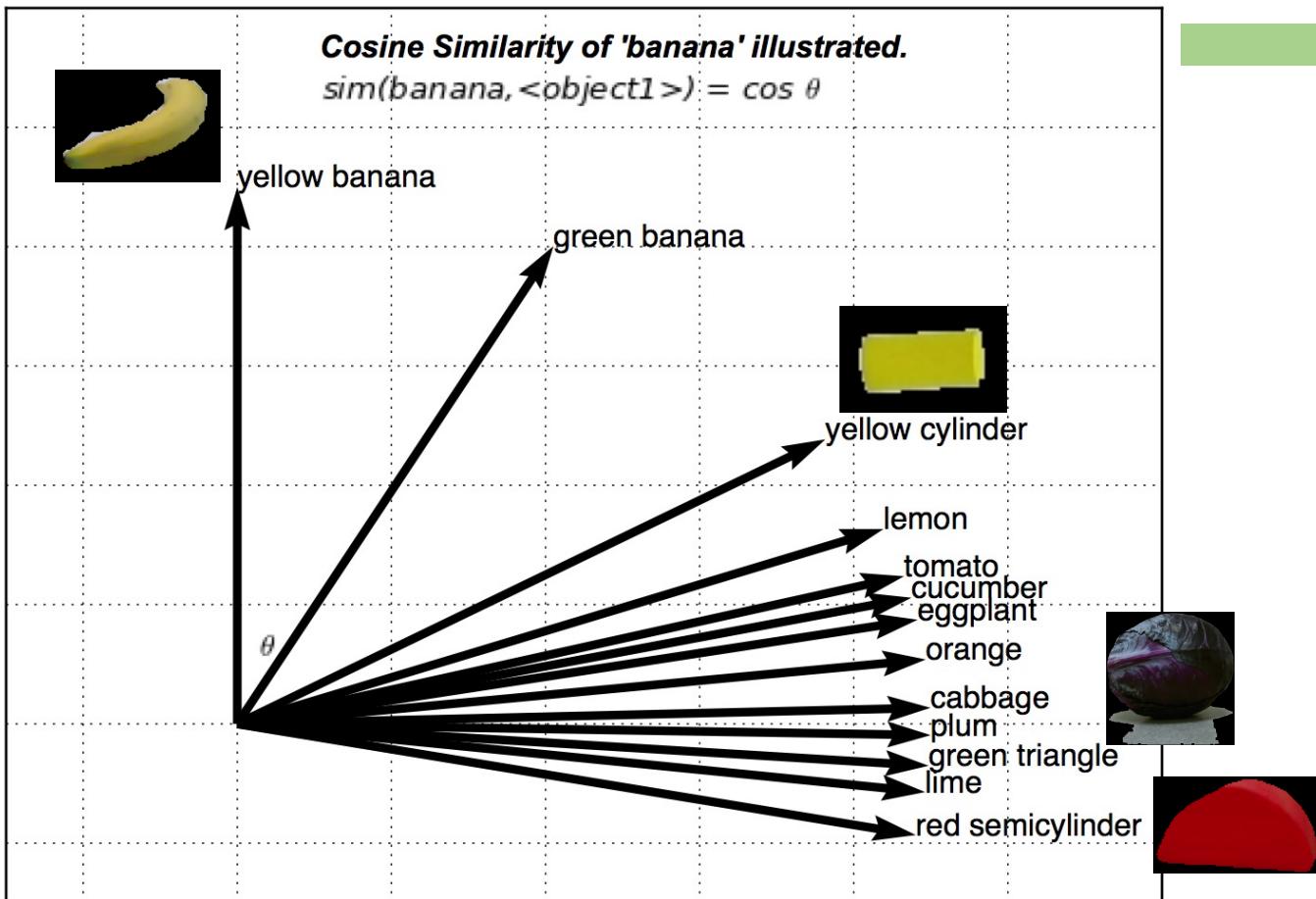
- ◆ tf-idf positive / negative labels
 - ◆ “Arch” is negative ☹
 - ◆ PV-DM fixes this

- ◆ 57 top terms
- ◆ Human errors
 - ◆ Tomato / tomatoe
 - ◆ Eggplant / eggplanet



Choosing Negatives

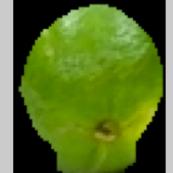
12



- ◆ Vectors → individual objects
- ◆ Angle → similarity of descriptions

Example Results

13

Label	Positive Examples			Negative Examples			
“carrot”							
“rectangular”							
“red”							

Color and Shape

14

Color classifier
denoted by “term”

	Ground truth				
	yellow	red	green	white	orange
“yellow”	0.93	0.20	0.37	0.05	0.02
“building”	0.09	0.11	0.00	0.00	0.17
“red”	0.00	0.89	0.05	0.16	0.35
“green”	0.27	0.00	0.89	0.02	0.00
“tomato”	0.24	0.94	0.00	0.00	0.00
“white”	0.06	0.68	0.55	0.85	0.73
“orange”	0.50	0.93	0.21	0.26	0.66

Shape classifier
denoted by “term”

	Ground truth				
	cube	cylinder	sphere	arch	triangle
“cylinder”	0.32	0.87	0.06	0.29	0.29
“rectangular”	0.82	0.43	0.51	0.78	0.30
“circle”	0.25	0.25	0.75	0.26	0.21
“archshaped”	0.29	0.27	0.12	0.82	0.33
“triangle”	0.54	0.60	0.52	0.31	0.82

- ◆ Performance of trained model
 - ◆ Ability to correctly classify held-out test set
- ◆ Goal: classifiers associated with attribute keywords have strong predictive power (only)

Results: Object identification

15

- ◆ Object classification:
 - ◆ Possibility of learning more complex concepts
 - ◆ Good performance on interacting problem

Object classifier denoted by “term”	Ground Truth				
	corn	semi- cylinder	banana	eggplant	tomato
“corn”	0.92	0.01	0.77	0.04	0.00
“building”	0.08	0.61	0.30	0.02	0.03
“banana”	0.00	0.15	1.00	0.00	0.04
“tomato”	0.00	0.00	0.05	0.00	0.94
“wedge”	0.49	0.30	0.00	0.43	0.00
“eggplant”	0.26	0.24	0.01	0.84	0.11

Future Work

16

- ◆ A thorough evaluation in positive and negative term selection
 - ◆ Use Amazon Mechanical Turk
- ◆ Comparison of model with a traditional base model
- ◆ Evaluate the model in a more 'real world' problem
 - ◆ A more varied set of objects.
 - ◆ Additional kinds of classifiers.
 - ◆ Complex visual classification tasks.

Conclusion

17

- ◆ Semantic representations of their perceived environments
- ◆ Discovered ground truth labels
- ◆ Document similarity metrics in negative example selection
 - ◆ Efficient in unprompted human interaction scenario
 - ◆ Effective for grounded language acquisition tasks

Thank you!
Questions?